Design of a compact atomic force microscope to enhance scanning speed

نویسندگان

  • Heung-Keun Park
  • Yong K. Hong
  • Sung Q Lee
  • Kee S. Moon
چکیده

A novel design of an atomic force microscope (AFM) with a (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT) single crystal scanner and a self-sensing cantilever is presented in this paper. The piezoelectric scanner and the self-sensing cantilever are integrated into a small-sized all-in-one structure with a microscope objective focused on the tip. The Z-scanner consists of two parallel PMN-PT unimorphs. This design can minimize the rotation and the sideways deflection at the sensing tip. The XY-scanner consists of two perpendicular small rods of PMN-PT. In this design, each PMN-PT rod serves as an actuator as well as a flexure because of the elastic property of the single crystal material. Under this configuration, the XY scanner can guarantee a fully decoupled planar scanning motion without positioning sensors and a sophisticated closed-loop control mechanism which is required for a XY scanner with conventional piezoelectric tubes. Furthermore, by adopting a self-sensing MEMS cantilever, the AFM design is simplified by discarding various optical sensing components. The attached objective offers fast visible inspection and rough positioning of the tip for measurement setups. We used a digital signal processor (DSP) based control scheme to achieve fast control speeds of the AFM. We also used LABVIEW for a flexible programming environment. We conducted finite-element analyses to characterize the dynamic performance of the AFM system. The system showed a high frequency band due to the small inertia of the moving part with relatively rigid structure. In addition, various scanning tests were performed to demonstrate that the system is capable of providing near video images.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design of Fractional Order Sliding Mode Controller for Chaos Suppression of Atomic Force Microscope System

A novel nonlinear fractional order sliding mode controller is proposed to control the chaotic atomic force microscope system in presence of uncertainties and disturbances. In the design of the suggested fractional order controller, conformable fractional order derivative is applied. The stability of the scheme is proved by means of the Lyapunov theory based on conformable fractional order deriv...

متن کامل

Design of a compact serial-kinematic scanner for high-speed atomic force microscopy: an analytical approach

A systematic procedure for designing a high-speed, compact serial-kinematic XYZ scanner for atomic force microscopy is presented in this Letter. Analytical stiffness calculations are used to estimate the first natural frequency and travel range of the scanner. Design and characterisation of the scanner are presented. Results of finite-element analysis and experimentation on the scanner revealed...

متن کامل

A Compact Vertical Scanner for Atomic Force Microscopes

A compact vertical scanner for an atomic force microscope (AFM) is developed. The vertical scanner is designed to have no interference with the optical microscope for viewing the cantilever. The theoretical stiffness and resonance of the scanner are derived and verified via finite element analysis. An optimal design process that maximizes the resonance frequency is performed. To evaluate the sc...

متن کامل

Effects of Fluid Environment Properties on the Nonlinear Vibrations of AFM Piezoelectric Microcantilevers

Nowadays, atomic-force microscopy plays a significant role in nanoscience and nanotechnology, and is widely used for direct measurement at atomic scale and scanning the sample surfaces. In tapping mode, the microcantilever of atomic-force microscope is excited at resonance frequency. Therefore, it is important to study its resonance. Moreover, atomic-force microscopes can be operated in fluid e...

متن کامل

Robust H ∞ control in fast Atomic Force Microscopy ∗

This paper presents the design of a robust H∞ controller for fast tracking of an Atomic Force Microscope (AFM). The controller design is based on a physical model of the AFM piezoelectric tube positioner. External capacitors are connected in series with the x and y contacts of the piezoelectric tube to provide measured voltages which are proportional to the charge on the actuator. The parameter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004